Sub-optimal wavelet denoising of coaveraged spectra employing statistics from individual scans.

نویسندگان

  • Roberto Kawakami Harrop Galvão
  • Heronides Adonias Dantas Filho
  • Marcelo Nascimento Martins
  • Mário César Ugulino Araújo
  • Celio Pasquini
چکیده

This paper proposes a novel wavelet denoising method, which exploits the statistics of individual scans acquired in the course of a coaveraging process. The proposed method consists of shrinking the wavelet coefficients of the noisy signal by a factor that minimizes the expected square error with respect to the true signal. Since the true signal is not known, a sub-optimal estimate of the shrinking factor is calculated by using the sample statistics of the acquired scans. It is shown that such an estimate can be generated as the limit value of a recursive formulation. In a simulated example, the performance of the proposed method is seen to be equivalent to the best choice between hard and soft thresholding for different signal-to-noise ratios. Such a conclusion is also supported by an experimental investigation involving near-infrared (NIR) scans of a diesel sample. It is worth emphasizing that this experimental example concerns the removal of actual instrumental noise, in contrast to other case studies in the denoising literature, which usually present simulations with artificial noise. The simulated and experimental cases indicate that, in classic denoising based on wavelet coefficient thresholding, choosing between the hard and soft options is not straightforward and may lead to considerably different outcomes. By resorting to the proposed method, the analyst is not required to make such a critical decision in order to achieve appropriate results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

Can Wavelet Denoising Improve Motor Unit Potential Template Estimation?

Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...

متن کامل

ECG Denoising by Modeling Wavelet Sub-Band Coefficients using Kernel Density Estimation

Discrete wavelet transforms are extensively preferred in biomedical signal processing for denoising, feature extraction, and compression. This paper presents a new denoising method based on the modeling of discrete wavelet coefficients of ECG in selected sub-bands with Kernel density estimation. The modeling provides a statistical distribution of information and noise. A Gaussian kernel with bo...

متن کامل

A new method for calculating earthquake characteristics and nonlinear spectra using wavelet theory

In the present study using the wavelet theory (WT) and later the nonlinear spectrum response of the acceleration (NSRA) resulted in estimating a strong earthquake record for the structure to a degree of freedom. WT was used in order to estimate the acceleration of earthquake mapping with equal sampling method (WTESM). Therefore, at first, the acceleration recorded in an earthquake using WTESM w...

متن کامل

A Comprehensive Study on Wavelet Based Shrinkage Methods for Denoising Natural Images

Transmitting the information in the form of images has drawn much importance in the modern age. The images are often corrupted by various types of noises during acquisition and transmission. Such images have to be cleaned before using in any applications. Image denoising is a thirst area in image processing for decades. Wavelet transform has been an efficient tool for image representation for d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytica chimica acta

دوره 581 1  شماره 

صفحات  -

تاریخ انتشار 2007